Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
An Acad Bras Cienc ; 95(suppl 2): e20220917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055560

RESUMEN

In the present study, a taxonomic review was conducted on representatives of the genus Tetmemorus (Desmidiaceae, Zygnematophyceae) documented within Brazilian territory. This review involved compiling data from the literature and analyzing samples collected throughout the Bahia State, updating our knowledge about this genus in Brazil. For each identified taxon, we provided information such as description, distribution across biomes and states, watersheds, ecological aspects (including habitat and community types), a list of examined (and excluded) materials, and taxonomic comments. Additionally, a taxonomic key for all species reported in Brazil was provided. Through this comprehensive review, we identified a total of eight Tetmemorus taxa occurring in Brazilian territory, comprising five species (T. brebissonii, T. furcatus, T. granulatus, T. laevis, T. planctonicus) and three non-typical varieties (T. brebissonii var. minor, T. laevis var. borgei, T. laevis var. minutus).


Asunto(s)
Chlorophyta , Ecosistema , Dispersión de las Plantas , Brasil , Chlorophyta/clasificación , Chlorophyta/genética
2.
J Cell Physiol ; 238(6): 1324-1335, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087727

RESUMEN

MADS transcription factors are involved in the regulation of fruit development and carotenoid metabolism in plants. However, whether and how carotenoid accumulation is regulated by algal MADS are largely unknown. In this study, we first used functional complementation to confirm the functional activity of phytoene synthase from the lutein-rich Dunaliella sp. FACHB-847 (DbPSY), the key rate-limiting enzyme in the carotenoid biosynthesis. Promoters of DbPSY and DbLcyB (lycopene ß-cyclase) possessed multiple cis-acting elements such as light-, UV-B-, dehydration-, anaerobic-, and salt-responsive elements, W-box, and C-A-rich-G-box (MADS-box). Meanwhile, we isolated one nucleus-localized MADS transcription factor (DbMADS), belonging to type I MADS gene. Three carotenogenic genes, DbPSY, DbLcyB, and DbBCH (ß-carotene hydroxylase) genes were upregulated at later stages, which was well correlated with the carotenoid accumulation. In contrast, DbMADS gene was highly expressed at lag phase with low carotenoid accumulation. Yeast one-hybrid assay and dual-luciferase reporter assay demonstrated that DbMADS could directly bind to the promoters of two carotenogenic genes, DbPSY and DbLcyB, and repress their transcriptions. This study suggested that DbMADS may act as a negative regulator of carotenoid biosynthesis by repressing DbPSY and DbLcyB at the lag phase, which provide new insights into the regulatory mechanisms of carotenoid metabolism in Dunaliella.


Asunto(s)
Carotenoides , Chlorophyta , Carotenoides/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Regulación de la Expresión Génica de las Plantas , Luteína , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
3.
Nature ; 615(7952): 468-471, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890226

RESUMEN

The animal phyla and their associated body plans originate from a singular burst of evolution occurring during the Cambrian period, over 500 million years ago1. The phylum Bryozoa, the colonial 'moss animals', have been the exception: convincing skeletons of this biomineralizing clade have been absent from Cambrian strata, in part because potential bryozoan fossils are difficult to distinguish from the modular skeletons of other animal and algal groups2,3. At present, the strongest candidate4 is the phosphatic microfossil Protomelission5. Here we describe exceptionally preserved non-mineralized anatomy in Protomelission-like macrofossils from the Xiaoshiba Lagerstätte6. Taken alongside the detailed skeletal construction and the potential taphonomic origin of 'zooid apertures', we consider that Protomelission is better interpreted as the earliest dasycladalean green alga-emphasizing the ecological role of benthic photosynthesizers in early Cambrian communities. Under this interpretation, Protomelission cannot inform the origins of the bryozoan body plan; despite a growing number of promising candidates7-9, there remain no unequivocal bryozoans of Cambrian age.


Asunto(s)
Briozoos , Chlorophyta , Fósiles , Filogenia , Animales , Briozoos/anatomía & histología , Briozoos/clasificación , Fosfatos/metabolismo , Chlorophyta/anatomía & histología , Chlorophyta/clasificación , Fotosíntesis , China
4.
Nat Commun ; 13(1): 146, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013306

RESUMEN

The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems.


Asunto(s)
Clorofila/química , Chlorophyta/ultraestructura , Complejos de Coordinación/química , Fósiles , Fotosíntesis/fisiología , Evolución Biológica , Clorofila/historia , Chlorophyta/anatomía & histología , Chlorophyta/clasificación , Chlorophyta/fisiología , República Democrática del Congo , Ecosistema , Células Eucariotas , Sedimentos Geológicos/análisis , Historia Antigua , Microscopía Electrónica de Transmisión , Níquel/química , Filogenia , Células Vegetales/fisiología , Células Vegetales/ultraestructura , Tetrapirroles/química , Espectroscopía de Absorción de Rayos X
5.
Mol Biol Rep ; 49(1): 179-188, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34686990

RESUMEN

BACKGROUND: Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS: Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS: The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.


Asunto(s)
Chlorophyta/clasificación , Código de Barras del ADN Taxonómico/métodos , ADN Intergénico/genética , ADN Ribosómico/genética , Regiones Antárticas , Chlorophyta/genética , ADN de Algas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos , Filogenia , Análisis de Secuencia de ADN
6.
Mar Drugs ; 19(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203079

RESUMEN

Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP, were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we examined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxidative stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin. The protein from Scenedesmus costatus SAG 46.88 was purified. It was named ScosAstaP and found to bind astaxanthin. The deduced amino acid sequence from a gene encoding ScosAstaP showed 62% identity to Ki-4 AstaP. The expression of the genes encoding AstaP orthologs was shown to be inducible under photooxidative stress conditions; however, the production amounts of AstaP orthologs were estimated to be approximately 5 to 10 times lower than that of Ki-4 and Oki-4N.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlorophyta/metabolismo , Estrés Oxidativo/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Chlorophyta/química , Chlorophyta/clasificación , Luz , Scenedesmus/química , Scenedesmus/clasificación , Scenedesmus/metabolismo , Solubilidad , Agua , Xantófilas/química , Xantófilas/aislamiento & purificación , Xantófilas/metabolismo
7.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135337

RESUMEN

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Asunto(s)
Chlorophyta/metabolismo , Océanos y Mares , Fotorreceptores de Plantas/metabolismo , Fitoplancton/metabolismo , Adaptación Fisiológica/genética , Núcleo Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolución Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplancton/clasificación , Fitoplancton/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética/efectos de la radiación
8.
Sci Rep ; 11(1): 8701, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888793

RESUMEN

We studied the biodiversity of Asterochloris photobionts found in Bolivian lichens to better understand their global spatial distribution and adaptation strategies in the context of a worldwide phylogeny of the genus. Based on nuclear ITS rDNA, the chloroplast rbcL gene and the actin type I gene we reconstructed a phylogenetic tree that recovered nine new Asterochloris lineages, while 32 Bolivian photobiont samples were assigned to 12 previously recognized Asterochloris lineages. We also show that some previously discovered Asterochloris photobiont species and lineages may occur in a broader spectrum of climatic conditions, and mycobiont species and photobionts may show different preferences along an altitude gradient. To reveal general patterns of of mycobiont specificity towards the photobiont in Asterochloris, we tested the influence of climate, altitude, geographical distance and effects of symbiotic partner (mycobiont) at the species level of three genera of lichen forming fungi: Stereocaulon, Cladonia and Lepraria. Further, we compared the specificity of mycobionts towards Asterochloris photobionts in cosmopolitan, Neotropical, and Pantropical lichen forming fungi. Interestingly, cosmopolitan species showed the lowest specificity to their photobionts, but also the lowest haplotype diversity. Neotropical and Paleotropical mycobionts, however, were more specific.


Asunto(s)
Chlorophyta/fisiología , Ecosistema , Líquenes/fisiología , Biodiversidad , Bolivia , Chlorophyta/clasificación , Líquenes/clasificación , Filogenia , Simbiosis
9.
Microb Ecol ; 81(2): 437-453, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32989484

RESUMEN

Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.


Asunto(s)
Aclimatación , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Microalgas/fisiología , Proteoma/metabolismo , Proteínas Algáceas/metabolismo , Pared Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/metabolismo , Chlorophyta/fisiología , Desecación , Líquenes/clasificación , Líquenes/metabolismo , Líquenes/fisiología , Microalgas/clasificación , Microalgas/metabolismo , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Agua/metabolismo
10.
Microb Ecol ; 81(2): 323-334, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32860076

RESUMEN

Assessment of the diversity of algal assemblages in Antarctica has until now largely relied on traditional microbiological culture approaches. Here we used DNA metabarcoding through high-throughput sequencing (HTS) to assess the uncultured algal diversity at two sites on Deception Island, Antarctica. The first was a relatively undisturbed site within an Antarctic Specially Protected Area (ASPA 140), and the second was a site heavily impacted by human visitation, the Whalers Bay historic site. We detected 65 distinct algal taxa, 50 from within ASPA 140 and 61 from Whalers Bay. Of these taxa, 46 were common to both sites, and 19 only occurred at one site. Algal richness was about six times greater than reported in previous studies using culture methods. A high proportion of DNA reads obtained was assigned to the highly invasive species Caulerpa webbiana at Whalers Bay, and the potentially pathogenic genus Desmodesmus was found at both sites. Our data demonstrate that important differences exist between these two protected and human-impacted sites on Deception Island in terms of algal diversity, richness, and abundance. The South Shetland Islands have experienced considerable effects of climate change in recent decades, while warming through geothermal activity on Deception Island itself makes this island one of the most vulnerable to colonization by non-native species. The detection of DNA of non-native taxa highlights concerns about how human impacts, which take place primarily through tourism and national research operations, may influence future biological colonization processes in Antarctica.


Asunto(s)
Biodiversidad , Chlorophyta/crecimiento & desarrollo , Islas , Regiones Antárticas , Chlorophyta/clasificación , Chlorophyta/genética , Ecosistema , Geografía , Humanos , Especies Introducidas , Microbiología del Suelo
11.
Mycologia ; 113(1): 43-55, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33146594

RESUMEN

Mycobionts of many lichen genera appear to demonstrate strong selectivity in the choice of algal partner. The biological properties of a photobiont and its availability in an environment significantly determine the habitat requirements of lichens. Flexibility in photobiont choice extends the ecological amplitude of lichens; therefore, it may constitute an important adaptive strategy for colonization of extreme habitats. The photobiont inventory of the three epigeic lichens most resistant to soil pollution, i.e., Cladonia cariosa, C. rei, and the hyperaccumulator Diploschistes muscorum, was examined to verify whether and to what extent algal composition depends on the type of habitat and substrate enrichment with heavy metals. Photobionts Asterochloris and Trebouxia were identified in the studied lichen species; however, the presence of Trebouxia was directly related to anthropogenic sites with technogenic substrates, and the proportion of lichen specimens with these algae clearly depended on the level of heavy-metal soil pollution and the habitat type. The total number of algal haplotypes increased with increasing soil pollution, and the richness was associated more with soil pollution than with a given lichen species. Additionally, a large number of lichen individuals bearing multiple algal genotypes at polluted sites were recorded. Although Cladonia lichens were previously thought to be restricted to Asterochloris, they are able to start the relichenization process with Trebouxia under specific habitat conditions and to establish a stable association with these algae when colonization of disturbed sites takes place. Comparative analysis of the internal transcribed spacer (ITS) rDNA sequences revealed as many as 13 haplotypes of Trebouxia, and phylogenetic analysis grouped them into two different clades. Such a high level of genetic diversity indicates that Trebouxia is well adapted to metal pollution and could be an alternative photosynthetic partner for certain lichens, especially in polluted sites.


Asunto(s)
Chlorophyta , Líquenes , Metales Pesados/metabolismo , Ascomicetos/fisiología , Chlorophyta/clasificación , Chlorophyta/genética , Chlorophyta/metabolismo , ADN de Algas , ADN Espaciador Ribosómico , Contaminación Ambiental , Genotipo , Líquenes/fisiología , Filogenia , Contaminantes del Suelo/metabolismo , Simbiosis
12.
World J Microbiol Biotechnol ; 36(10): 149, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32914262

RESUMEN

A terrestrial green microalga was isolated at Ås, in Akershus County, Norway. The strain corresponded to a coccoid chlorophyte. Morphological characteristics by light and electron microscopy, in conjunction with DNA amplification and sequencing of the 18 s rDNA gene and ITS sequences, were used to identify the microalgae. The characteristics agree with those of the genus Coelastrella defined by Chodat, and formed a sister group with the recently described C. thermophila var. globulina. Coelastrella is a relatively small numbered genus that has not been observed in continental Norway before; there are no previous cultures available in collections of Norwegian strains. Gas chromatography analyses of the FAME-derivatives showed a high percentage of polyunsaturated fatty acids (44-45%) especially linolenic acid (C18:3n3; 30-34%). After the stationary phase, the cultures were able to accumulate several carotenoids as neoxanthin, pheophytin a, astaxanthin, canthaxanthin, lutein, and violaxanthin. Due to the scarcity of visual characters suitable for diagnostic purposes and the lack of DNA sequence information, there is a high possibility that species of this genus have been neglected in local environmental studies, even though it showed interesting properties for algal biotechnology.


Asunto(s)
Chlorophyta/clasificación , Microalgas/clasificación , Microalgas/aislamiento & purificación , Filogenia , Biotecnología , Carotenoides/análisis , Chlorophyta/citología , Chlorophyta/genética , ADN Ribosómico , Ácidos Grasos/análisis , Microalgas/citología , Microalgas/genética , Noruega , Feofitinas/análisis , Pigmentos Biológicos/análisis , ARN Ribosómico 18S/genética , Especificidad de la Especie , Xantófilas , Ácido alfa-Linolénico/análisis
13.
Environ Microbiol ; 22(11): 4620-4632, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803809

RESUMEN

The soils of the McMurdo Dry Valleys (MDV) of Antarctica are established models for understanding fundamental processes in soil ecosystem functioning (e.g. ecological tipping points, community structuring and nutrient cycling) because the extreme physical environment drastically reduces biodiversity and ecological complexity. Understanding the functioning of MDV soils requires in-depth knowledge of the diversity of MDV soil species. Protists, which contribute significantly to soil ecosystem functioning worldwide, remain poorly characterized in the MDV. To better assess the diversity of MDV protists, we performed shotgun metagenomics on 18 sites representing a variety of landscape features and edaphic variables. Our results show MDV soil protists are diverse at both the genus (155 of 281 eukaryote genera) and family (120) levels, but comprise only 6% of eukaryotic reads. Protists are structured by moisture, total N and distance from the local coast and possess limited richness in arid (< 5% moisture) and at high elevation sites, known drivers of communities in the MDV. High relative diversity and broad distribution of protists in our study promotes these organisms as key members of MDV soil microbiomes and the MDV as a useful system for understanding the contribution of soil protists to the structure of soil microbiomes.


Asunto(s)
Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Microbiota/genética , Regiones Antárticas , Biodiversidad , Cercozoos/clasificación , Cercozoos/genética , Cercozoos/aislamiento & purificación , Chlorophyta/clasificación , Chlorophyta/genética , Cilióforos/clasificación , Cilióforos/genética , Cilióforos/aislamiento & purificación , Ecosistema , Eucariontes/genética , Metagenómica , Suelo/química , Suelo/parasitología , Microbiología del Suelo , Estramenopilos/clasificación , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
14.
BMC Genomics ; 21(1): 391, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503414

RESUMEN

BACKGROUND: Nitrogen is an indispensable nutrient for plant growth. It is used and transported in the form of amino acids in living organisms. Transporting amino acids to various parts of plants requires relevant transport proteins, such as amino acid permeases (AAPs), which were our focus in this study. RESULTS: We found that 5 AAP genes were present in Chlorophyte species and more AAP genes were predicted in Bryophyta and Lycophytes. Two main groups were defined and group I comprised 5 clades. Our phylogenetic analysis indicated that the origin of clades 2, 3, and 4 is Gymnospermae and that these clades are closely related. The members of clade 1 included Chlorophyta to Gymnospermae. Group II, as a new branch consisting of non-seed plants, is first proposed in our research. Our results also indicated that the AAP family was already present in Chlorophyta and then expanded accompanying the development of vasculature. Concurrently, the AAP family experienced multiple duplication events that promoted the generation of new functions and differentiation of sub-functions. CONCLUSIONS: Our findings suggest that the AAP gene originated in Chlorophyta, and some non-seed AAP genes clustered in one group. A second group, which contained plants of all evolutionary stages, indicated the evolution of AAPs. These new findings can be used to guide future research.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Chlorophyta/enzimología , Magnoliopsida/enzimología , Análisis de Secuencia de ADN/métodos , Chlorophyta/clasificación , Chlorophyta/genética , Evolución Molecular , Duplicación de Gen , Magnoliopsida/clasificación , Magnoliopsida/genética , Familia de Multigenes , Nitrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética
15.
Nat Commun ; 11(1): 2527, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433543

RESUMEN

We present the first estimate of green snow algae community biomass and distribution along the Antarctic Peninsula. Sentinel 2 imagery supported by two field campaigns revealed 1679 snow algae blooms, seasonally covering 1.95 × 106 m2 and equating to 1.3 × 103 tonnes total dry biomass. Ecosystem range is limited to areas with average positive summer temperatures, and distribution strongly influenced by marine nutrient inputs, with 60% of blooms less than 5 km from a penguin colony. A warming Antarctica may lose a majority of the 62% of blooms occupying small, low-lying islands with no high ground for range expansion. However, bloom area and elevation were observed to increase at lower latitudes, suggesting that parallel expansion of bloom area on larger landmasses, close to bird or seal colonies, is likely. This increase is predicted to outweigh biomass lost from small islands, resulting in a net increase in snow algae extent and biomass as the Peninsula warms.


Asunto(s)
Carbono/metabolismo , Chlorophyta/metabolismo , Distribución Animal , Animales , Regiones Antárticas , Biomasa , Aves/crecimiento & desarrollo , Carbono/análisis , Secuestro de Carbono , Chlorophyta/clasificación , Chlorophyta/crecimiento & desarrollo , Ecosistema , Eutrofización , Islas , Tecnología de Sensores Remotos , Phocidae/crecimiento & desarrollo , Estaciones del Año , Spheniscidae/crecimiento & desarrollo
16.
Mol Phylogenet Evol ; 150: 106860, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32473336

RESUMEN

Species in the fungal genus Sticta form symbiotic associations primarily with either green algae or cyanobacteria, but tripartite associations or photosymbiodemes involving both types of photobionts occur in some species. Sticta is known to associate with green algae in the genus Symbiochloris. However, previous studies have shown that algae from other genera, such as Heveochlorella, may also be suitable partners for Sticta. We examined the diversity of green algal partners in the genus Sticta and assessed the patterns of association between the host fungus and its algal symbiont. We used multi-locus sequence data from multiple individuals collected in Australia, Cuba, Madagascar, Mauritius, New Zealand, Reunion and South America to infer phylogenies for fungal and algal partners and performed tests of congruence to assess coevolution between the partners. In addition, event-based methods were implemented to examine which cophylogenetic processes have led to the observed association patterns in Sticta and its green algal symbionts. Our results show that in addition to Symbiochloris, Sticta associates with green algae from the genera Chloroidium, Coccomyxa, Elliptochloris and Heveochlorella, the latter being the most common algal symbiont associated with Sticta in this study. Geography plays a strong role in shaping fungal-algal association patterns in Sticta as mycobionts associate with different algal lineages in different geographic locations. While fungal and algal phylogenies were mostly congruent, event-based methods did not find any evidence for cospeciation between the partners. Instead, the association patterns observed in Sticta and associated algae, were largely explained by other cophylogenetic events such as host-switches, losses of symbiont and failure of the symbiont to diverge with its host. Our results also show that tripartite associations with green algae evolved multiple times in Sticta.


Asunto(s)
Ascomicetos/clasificación , Chlorophyta/clasificación , Ascomicetos/genética , Chlorophyta/genética , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 18S/química , ARN Ribosómico 18S/clasificación , ARN Ribosómico 18S/genética , Simbiosis
17.
FEMS Microbiol Lett ; 367(11)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407482

RESUMEN

Diversity studies of endophytic assemblages are emerging challenges, which unveil novel phenotypes producing interesting chemical entities and a better understanding of their ecological significance. In the present investigation, we selected an extremely complex and unique environment supporting unexplored endophytes, 'Macroalgae of Kerala coast, India'. Unlike terrestrial flora and mangroves, reports displaying endophytic assemblages of marine flora remain limited, especially from India. The main goal of this study was to expose hidden endophytic fungi from macroalgae and examination of their bioactive potential. An ecological investigation of four red, four green and three brown algae resulted in 133 fungal taxa with 29 distinct morphospecies. Aspergillus and Penicillium were found to be the dominant genera. Penicillium chrysogenum was the sole fungi that contributed 11% of the entire endophytic community. Antimicrobial activity against various aquaculture/human pathogens revealed that around 59% of endophytes inhibited at least one of the pathogens screened. The maximum number of isolates (37%) inhibited Escherichia coli tailed by Aspergillus fumigatus (27%). Antimicrobial profile of fungal endophytes endorses them as a potential source of bioactive molecules that can be explored to find a solution for drug resistance in microbial pathogens.


Asunto(s)
Chlorophyta/microbiología , Endófitos/aislamiento & purificación , Hongos/aislamiento & purificación , Phaeophyceae/microbiología , Algas Marinas/microbiología , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Chlorophyta/clasificación , Endófitos/clasificación , Endófitos/genética , Endófitos/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , India , Phaeophyceae/clasificación , Filogenia , Agua de Mar/microbiología , Algas Marinas/clasificación
18.
Mol Phylogenet Evol ; 149: 106821, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32294545

RESUMEN

Lichens provide valuable systems for studying symbiotic interactions. In lichens, these interactions are frequently described in terms of availability, selectivity and specificity of the mycobionts and photobionts towards one another. The lichen-forming, green algal genus Trebouxia Puymaly is among the most widespread photobiont, associating with a broad range of lichen-forming fungi. To date, 29 species have been described, but studies consistently indicate that the vast majority of species-level lineages still lack formal description, and new, previously unrecognized lineages are frequently reported. To reappraise the diversity and the evolutionary relationships of species-level lineages in Trebouxia, we assembled DNA sequence data from over 1600 specimens, compiled from a range of sequences from previously published studies, axenic algal cultures, and lichens collected from poorly sampled regions. From these samples, we selected representatives of the currently known genetic diversity in the lichenized Trebouxia and inferred a phylogeny from multi-locus sequence data (ITS, rbcL, cox2). We demonstrate that the current formally described species woefully underrepresent overall species-level diversity in this important lichen-forming algal genus. We anticipate that an integrative taxonomic approach, incorporating morphological and physiological data from axenic cultures with genetic data, will be required to establish a robust, comprehensive taxonomy for Trebouxia. The data presented here provide an important impetus and reference dataset for more reliably characterizing diversity in lichenized algae and in using lichens to investigate the evolution of symbioses and holobionts.


Asunto(s)
Biodiversidad , Chlorophyta/clasificación , Líquenes/clasificación , Filogenia , Chlorophyta/anatomía & histología , Chlorophyta/genética , Chlorophyta/ultraestructura , Sitios Genéticos , Líquenes/genética , Líquenes/ultraestructura , Especificidad de la Especie
19.
Metallomics ; 12(4): 617-630, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32195517

RESUMEN

Metal transport processes are relatively poorly understood in algae in comparison to higher plants and other eukaryotes. A screen of genomes from 33 taxonomically diverse algal species was conducted to identify members of the Cation Diffusion Facilitator (CDF) family of metal ion transporter. All algal genomes contained at least one CDF gene with four species having >10 CDF genes (median of 5 genes per genome), further confirming that this is a ubiquitous gene family. Phylogenetic analysis suggested a CDF gene organisation of five groups, which includes Zn-CDF, Fe/Zn-CDF and Mn-CDF groups, consistent with previous phylogenetic analyses, and two functionally undefined groups. One of these undefined groups was algal specific although excluded chlorophyte and rhodophyte sequences. The majority of sequences (22 out of 26 sequences) from this group had a putative ion binding site motif within transmembrane domain 2 and 5 that was distinct from other CDF proteins, such that alanine or serine replaced the conserved histidine residue. The phylogenetic grouping was supported by sequence cluster analysis. Yeast heterologous expression of CDF proteins from Chlamydomonas reinhardtii indicated Zn2+ and Co2+ transport function by CrMTP1, and Mn2+ transport function by CrMTP2, CrMTP3 and CrMTP4, which validated the phylogenetic prediction. However, the Mn-CDF protein CrMTP3 was also able to provide zinc and cobalt tolerance to the Zn- and Co-sensitive zrc1 cot1 yeast strain. There is wide diversity of CDF transporters within the algae lineage, and some of these genes may be attractive targets for future applications of metal content engineering in plants or microorganisms.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cobalto/metabolismo , Genómica/métodos , Hierro/metabolismo , Manganeso/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/clasificación , Proteínas de Transporte de Catión/metabolismo , Carofíceas/clasificación , Carofíceas/genética , Carofíceas/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Chlorophyta/metabolismo , Diatomeas/clasificación , Diatomeas/genética , Diatomeas/metabolismo , Haptophyta/clasificación , Haptophyta/genética , Haptophyta/metabolismo , Transporte Iónico , Filogenia , Rhodophyta/clasificación , Rhodophyta/genética , Rhodophyta/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
20.
Biochemistry ; 59(14): 1398-1409, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32208646

RESUMEN

Marine algae are a major source of ω-3 long-chain polyunsaturated fatty acids (ω3-LCPUFAs), which are conditionally essential nutrients in humans and a target for industrial production. The biosynthesis of these molecules in marine algae requires the desaturation of fatty acids by Δ6-desaturases, and enzymes from different species display a range of specificities toward ω3- and ω6-LCPUFA precursors. In the absence of a molecular structure, the structural basis for the variable substrate specificity of Δ6-desaturases is poorly understood. Here we have conducted a consensus mutagenesis and ancestral protein reconstruction-based analysis of the Δ6-desaturase family, focusing on the ω3-specific Δ6-desaturase from Micromonas pusilla (MpΔ6des) and the bispecific (ω3/ω6) Δ6-desaturase from Ostreococcus tauri (OtΔ6des). Our characterization of consensus amino acid substitutions in MpΔ6des revealed that residues in diverse regions of the protein, such as the N-terminal cytochrome b5 domain, can make important contributions to determining substrate specificity. Ancestral protein reconstruction also suggests that some extant Δ6-desaturases, such as OtΔ6des, could have adapted to different environmental conditions by losing specificity for ω3-LCPUFAs. This data set provides a map of regions within Δ6-desaturases that contribute to substrate specificity and could facilitate future attempts to engineer these proteins for use in biotechnology.


Asunto(s)
Chlorophyta/enzimología , Linoleoil-CoA Desaturasa/química , Linoleoil-CoA Desaturasa/genética , Chlorophyta/química , Chlorophyta/clasificación , Chlorophyta/genética , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/química , Ácidos Grasos Omega-6/metabolismo , Linoleoil-CoA Desaturasa/metabolismo , Familia de Multigenes , Mutagénesis , Filogenia , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA